材料力學

教課書：Mechanics of Materials, 8th edition in SI unit
作者：R.C. Hibbeler, by Pearson, 2011.

教師：趙儒民 603室：電話:2757575-63532
rmchao@mail.ncku.edu.tw

上課時間：星期一第七節（習題解答）
星期四第七、八節

Office hours: 星期一 16:30~18:00 ; (1600~1800 Homework study)
星期四 13:30~15:00

成績：期中考（二次） 40%
三月二十八日課堂第一至五章
五月九日晚間第六、七、八及九章
期末考 25%
六月二十日課程全部，但第十一及十二章為主
平時課堂小考 15%
至少四次

Homework and課堂參與（週一作業時間、課堂筆記）20%

助教：詹君瑜研究生室 6L；63534 轉 229 手機：0934-146406

課程大綱：
1. 應力與應變
2. 軸向負荷
3. 扭轉問題
4. 剪力與彎矩
5. 樑之應力分析
6. 莫爾圓--不同方位之應力計算
7. 樑之變形問題
8. 能量法則應用在材料力學的計算
Mechanics of Materials

Text and references:

Grade:
- Midterm, twice: 40%
- Final: 25%
- Quiz: 15%
- HW and Class Participation: 20%

Outline:
1. Stress and Strain
2. Uni-axial Loading
3. Torsion
4. Shear force and Bending Moment
5. Beam problem
6. Mohr circle
7. Deflection of Beam
8. Energy methods
<table>
<thead>
<tr>
<th>Week</th>
<th>Contents</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Mechanics of materials</td>
<td>Syllabus, Materials vs mechanics</td>
</tr>
<tr>
<td>2</td>
<td>Chap1 Stress, Chap2 Strain</td>
<td>Stress and strain, Examples Demo</td>
</tr>
<tr>
<td>3</td>
<td>Chap 2 Strain, Chap 3 material properties</td>
<td>Material testing, In class HW</td>
</tr>
<tr>
<td>4</td>
<td>Chap 4 Axial loading: Sec. 4.1~4.4</td>
<td>Stress and deformation, Indeterminate support</td>
</tr>
<tr>
<td>5</td>
<td>Chap 4.44.8; Chap 5 Torsion: 5.15.2 Static indeterminate</td>
<td>Residual stress, HW Angle of twist</td>
</tr>
<tr>
<td>6</td>
<td>Chap 5.2~5.5 Midterm exam</td>
<td>Shear stress, Midterm 1 (3/28 Thur)</td>
</tr>
<tr>
<td>7</td>
<td>Chap 6 Bending, Sec 6.1~6.4</td>
<td>Review of Midterm exam, Bending moment and stress</td>
</tr>
<tr>
<td>8</td>
<td>Chap 6.46.6, Chap 7 Transverse shear Sec 7.17.2</td>
<td>Composite beam and un-symmetric loading, Max shear stress</td>
</tr>
<tr>
<td>9</td>
<td>Chap 7 Transverse shear</td>
<td>Q: First moment about NA</td>
</tr>
<tr>
<td>10</td>
<td>Chap 7.2~7.5</td>
<td>Shear stress calculation</td>
</tr>
<tr>
<td>11</td>
<td>Chap 8 Combined loading</td>
<td>Design criteria</td>
</tr>
<tr>
<td>12</td>
<td>Chap 8 Combined loading</td>
<td>Midterm 2 (5/9 eve)</td>
</tr>
<tr>
<td>13</td>
<td>Chap 9 Stress transformation</td>
<td>Stress acting on various plane</td>
</tr>
<tr>
<td>14</td>
<td>Chap 10 (Neglected), Chap 11 Design of beam</td>
<td>Choice of sectional modulus and materials</td>
</tr>
<tr>
<td>15</td>
<td>Chap 12 deflection of beams and shafts, chap 12.1~12.2</td>
<td>Deflection calculation by various method</td>
</tr>
<tr>
<td>16</td>
<td>Chap 12.5~12.7</td>
<td>DE, moment area methods</td>
</tr>
<tr>
<td>17</td>
<td>Chap 12.8~12.9, Chap 13 Buckling, Chap 14 Energy method</td>
<td>Superposition method, Quick talk on buckling</td>
</tr>
<tr>
<td>18</td>
<td>Final exam 6/20</td>
<td>Good luck</td>
</tr>
</tbody>
</table>