Computer Aided Engineering Course Schedule (2009)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09/17</td>
<td>Course Outline; Taste of MATLAB</td>
</tr>
<tr>
<td>2</td>
<td>09/24</td>
<td>Introduction to MATLAB</td>
</tr>
<tr>
<td>3</td>
<td>10/01</td>
<td>Optimization (I): Formulation & Theory</td>
</tr>
<tr>
<td>4</td>
<td>10/08</td>
<td>Optimization (II): Search & Gradient Methods</td>
</tr>
<tr>
<td>5</td>
<td>10/15</td>
<td>Optimization (III): Stochastic Algorithms (HW1 due 10/29)</td>
</tr>
<tr>
<td>6</td>
<td>10/22</td>
<td>*Introduction to SolidWorks (Rapid Prototyping) (HW2 due 11/12)</td>
</tr>
<tr>
<td>8</td>
<td>11/05</td>
<td>Computer Graphics (II): Parametric Geometry</td>
</tr>
<tr>
<td>10</td>
<td>11/19</td>
<td>Midterm Test (in class written test)</td>
</tr>
<tr>
<td>11</td>
<td>11/26</td>
<td>Artificial Intelligent (I): General Problem Solving</td>
</tr>
<tr>
<td>12</td>
<td>12/03</td>
<td>Artificial Intelligent (II): Neural Network</td>
</tr>
<tr>
<td>13</td>
<td>12/10</td>
<td>Artificial Intelligent (III): Fuzzy Logic (HW3 due 12/24)</td>
</tr>
<tr>
<td>14</td>
<td>12/17</td>
<td>Introduction to COSMOS/ANSYS (HW4 due 01/07)</td>
</tr>
<tr>
<td>15</td>
<td>12/24</td>
<td>Finite Element Analysis (I): General Concept (Project Proposal due)</td>
</tr>
<tr>
<td>16</td>
<td>12/31</td>
<td>Finite Element Analysis (II): Theory & Usages</td>
</tr>
<tr>
<td>17</td>
<td>01/07</td>
<td>Project Presentation</td>
</tr>
<tr>
<td>18</td>
<td>01/14</td>
<td>Project Presentation</td>
</tr>
</tbody>
</table>
Class

- Hours: Thursday 9:10am-12:00pm
- Office: 5729
- cchang@mail.bme.ncku.edu.tw
 (Not for Home Work)

 - Office: x 63427

 - Lab.: x 63431 x 31

Course Grading

- Home Works: 40%
 - caeclass@mail.bme.ncku.edu.tw
 subject: HW#.## (student ID#, Name)
 - NO late turn in

- Midterm Test: 30%

- Final Project: 30%
Course Outline

- Optimization (w/o Linear Programming)
 - MATLAB
 - formulation; algorithm; theory
- Computer Graphics
 - SolidWorks
 - Matrix transformation
 - Parametric geometric
 - Solid modeling (w/ shading)
- Artificial Intelligence
 - MATLAB
 - Problem solving
 - Neural Network
 - Fuzzy Logical
- Finite Element Analysis
 - ANSYS; COSMOS
 - General concepts & Theory

*References will be given at the start of each topic.

Course Requirements

- BCC

- Computer Programming Concepts
 (BASIC, FORTRAN, C, MATLAB)

- Numerical Analysis
Terms

- **Algorithm**
 - A step by step procedure that produces a solution for a particular problem

- **Numerical Methods**
 - An algorithm for solving a problem whose solution consists of one or more numerical values. Most numerical methods give answers that are only approximate to the desired true solution
Terms

- **Numerical Solution**
 - numerical form; can obtain solution values at only pre-selected positions of the problem domain

- **Analytical Solution**
 - close (symbolic) form; can obtain solution values at any position of the problem domain

What is CAE?

- **Using computer to do the:**
 - Simulation
 - Analysis
 - Modeling
 - Graphic
 -
 - Computation
1946 ENIAC 5k operations/sec
1976 Cray-I 160 Mflops 8M RAM
1990s Cray C90 1 Gflops 256M RAM

“Supercomputing made simple: New software helps tap unlimited power of idle PCs” (180 Tflops)
- 6.6.2003 CNN

“2009 Top 500: 1.1 Pflops (Los Alamos National Lab., USA)”

In 63 yrs: $10^3 \rightarrow 10^{15}$

“Never in the history of mankind has it been possible to produce so many wrong answers so quickly”

- Carl-Erik Fröberg
- (1918~2007, Sweden)