普通物理學(GENERAL PHYSICS)
課程碼為: I520900
課程大綱

課本：Physics, For Scientist and Engineers with Modern Physics
版本：第七版 (2008 年版)
著者：R. A. Serway and J. W. Jewett, Jr
出版商：Thomson Learning Academic Resource Center
代理商：滄海書局，台中市西屯區台中港路二段 122 之 19 號 11 樓
建議購書處：成大書局

講授以下三部分：
Part 1 Mechanics 1
Part 2 Oscillations and Mechanical Wave
Part 3 Thermodynamics

課程內容為

Part 1 Mechanics
力學部分之主要內容為

- PHYSICS AND MEASUREMENT
 - Standarts of Lenght, Mass and Time
 - The Building Blocks of Matter
 - Density and Atomic Mass
 - Dimensional Analysis
 - Conversion of Units
 - Order-of-Magnitude Calculations
 - Significant Figures
 - Mathematical Notation

- MOTION IN ONE DIMENSION
 - Displacement, Velocity and Speed
 - Instantaneous Velocity and Speed
 - Acceleration
 - One-Dimensional Motion with Constant Acceleration
 - Freely Falling Objects
<table>
<thead>
<tr>
<th>Kinematic Equations Derived from Calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>VECTORS</td>
</tr>
<tr>
<td>o Coordinate Systems and Frames of Reference</td>
</tr>
<tr>
<td>o Vector and Scalar Quantities</td>
</tr>
<tr>
<td>o Some Properties of Vectors</td>
</tr>
<tr>
<td>o Components of a Vector and Unit Vectors</td>
</tr>
<tr>
<td>MOTION IN TWO DIMENSION</td>
</tr>
<tr>
<td>o The Displacement, Velocity and Acceleration Vectors</td>
</tr>
<tr>
<td>o Two Dimensional Motion with Constant Acceleration</td>
</tr>
<tr>
<td>o Projectile Motion</td>
</tr>
<tr>
<td>o Uniform Circular Motion</td>
</tr>
<tr>
<td>o Tangential and Radial Acceleration</td>
</tr>
<tr>
<td>o Relative Velocity and Relative Acceleration</td>
</tr>
<tr>
<td>o Relative Motion at High Speeds</td>
</tr>
<tr>
<td>THE LAWS OF MOTION</td>
</tr>
<tr>
<td>o The Concept of Force</td>
</tr>
<tr>
<td>o Newton’s First Law and Inertial Frames</td>
</tr>
<tr>
<td>o Inertial Mass</td>
</tr>
<tr>
<td>o Newton’s Second Law</td>
</tr>
<tr>
<td>o weight</td>
</tr>
<tr>
<td>o Newton’s Third Law</td>
</tr>
<tr>
<td>o Some Applications of Newton’s Law</td>
</tr>
<tr>
<td>o Forces of Friction</td>
</tr>
<tr>
<td>CIRCULAR MOTION AND OTHER APPLICATIONS OF NEWTON’S LAW</td>
</tr>
<tr>
<td>o Newton’s Second Law Applied to Uniform Circular Motion</td>
</tr>
<tr>
<td>o Nonuniform Circular Motion</td>
</tr>
<tr>
<td>o Motion in Accelerated Frames</td>
</tr>
<tr>
<td>o Motion in the Presence of Resistive Forces</td>
</tr>
</tbody>
</table>
o Numerical Modeling in Partical Dynamics
o The Fundemental Forces of NAture

• WORK AND ENERGY

 o Work Done by a Constant Force
 o The Scalar Product of Two Vectors
 o Work Done by a Varying Force
 o Kinetic Energy and the Work-Energy Theorem
 o Power
 o Energy and the Automobile
 o Kinetic Energy at High Speeds

• POTENTIAL ENERGY AND CONVERSION OF ENERGY

 o Potential Energy
 o Conservative and Nonconservative Forces
 o Conservative Forces and Potential Energy
 o Conservation of Energy
 o Changes in Mechanical Energy When Nonconservative Forces are Present
 o Relationship Between Conservative Forces and Potential Energy
 o Energy Diagrams and Equilibrium of a System
 o Conservation of Energy in General
 o Mass-Energy Equivalence
 o Quantization of Energy

• LINEER MOMENTUM AND COLLISIONS

 o Lineer Momentum and its Conservation
 o Impulse and Momentum
 o Collisions
 o Elastic and Inelastic Collisions in One Dimension
 o Two-Dimensional Collisions
 o The Center of Mass
 o Motion of a system of Particles
 o Rocket Propulsion
• ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS
 - Angular Velocity and Angular Acceleration
 - Rotational Kinematics: Rotational Motion with Constant Angular Acceleration
 - Relationship Between Angular and Linear Quantities
 - Rotational Energy
 - Calculation of Moments of Inertia
 - Torque
 - Relationship Between Torque and Angular Acceleration
 - Work, Power and Energy in Rotational Motion

• ROLLING MOTION, ANGULAR MOMENTUM AND TORQUE
 - Rolling Motion of a Rigid Body
 - The Vector Product and Torque
 - Angular Momentum of a Particle
 - Rotation of a Rigid Body About a Fixed Axis
 - Conservation of Angular Momentum
 - The Motion of Gyroscopes and Tops
 - Angular Momentum as a Fundamental Quantity

• STATIC EQUILIBRIUM AND ELASTICITY
 - The Conditions of Equilibrium of a Rigid Object
 - More on the Center of Gravity
 - Examples of Rigid Objects in Static Equilibrium
 - Elastic Properties of Solids

• OSCILLATORY MOTION
 - Simple Harmonic Motion
 - Mass Attached to a Spring
 - Energy of the Simple Harmonic Oscillator
 - The Pendulum
 - Comparing Simple Harmonic Motion with Uniform Circular Motion
 - Damped Oscillations
 - Forced Oscillations
• **THE LAW OF GRAVITY**

 o Newton’s Law of Gravity
 o Measurement of the Gravitational Constant
 o Weight and Gravitational Force
 o Keppler’s Law
 o The Law of Gravity and the Motion of Planets
 o The Gravitational Field
 o Gravitational Potential Energy
 o Energy Considerations in Planetary and Satellite Motion
 o Gravitational Force Between an Extended Object and a Particle
 o Gravitational Force Between a Particle and a Spherical Mass

• **FLUID MECHANICS**

 o Pressure
 o Variation of Pressure with Depth
 o Pressure Measurements
 o Buoyant Forces and Archimede’s Principle
 o Fluid Dynamics
 o Streamlines and the Equation of Continuity
 o Bernolli’s Equation
 o Other Applications of Bernolli’s Equation
 o Energy from the Wind
 o Viscosity