基本素養 Basic Literacy
核心能力 Competence
課程概述 Course Description
本課程模組分為三個主要的部分,分別為即時追蹤與地圖建置(SLAM)、基於機器學習之場景理解(Scene Understanding)與探索導航的動作控制(Action Control)。即時追蹤與地圖建置部分包含機率模型與相機模型等理論基礎,再搭配2D場景追蹤建圖的實作並介紹RGB-based的3D SLAM。場景理解的部分包含機器學習的基本概念,再帶到深度學習的技術與目前的物件偵測與語意切割技術。動作控制的部分則包含路徑規劃與導航演算法,並帶入強化學習的概念來引導行進的路徑。本課程模組分為三個主要的部分,分別為即時追蹤與地圖建置(SLAM)、基於機器學習之場景理解(Scene Understanding)與探索導航的動作控制(Action Control)。即時追蹤與地圖建置部分包含機率模型與相機模型等理論基礎,再搭配2D場景追蹤建圖的實作並介紹RGB-based的3D SLAM。場景理解的部分包含機器學習的基本概念,再帶到深度學習的技術與目前的物件偵測與語意切割技術。動作控制的部分則包含路徑規劃與導航演算法,並帶入強化學習的概念來引導行進的路徑。
課程學習目標 Course Objectives
課程進度 Progress Description
進度說明 Progress Description | |
---|---|
1 | Introduction of Robotic Navigation and Exploration Algorithm-based Methodology Learning-based Methodology w/ Map vs. w/o Map |
2 | Sensor Technologies for Simultaneous Localization and Mapping (SLAM) Probability Basics and Bayesian Statistics Grid Map Algorithm HW1 : Grid Map |
3 | Online Bayesian Learning Kalman Filter Extended Kalman Filter Sampling Method CDF Sampling Rejection MCMC |
4 | Monte-Carlo Sequential Learning Importance (particle filter) SIS (Sequential Importance Sampling) SIR (Sampling Importance Resampling) Particle Filter Fast-SLAM / Grid Fast-SLAM |
5 | Implementation Details of Monte-Carlo Sequential Learning Line Tracing Laser Beam Model Motion Model Adaptive Resampling Method HW2 : Grid Fast-SLAM |
6 | 3D SLAM Multi-View Geometry Structure from Motion Indirect Method ORB SLAM (Project Bonus) Direct Method Depth-based Method |
7 | 3D SLAM Multi-View Geometry Structure from Motion Indirect Method ORB SLAM (Project Bonus) Direct Method Depth-based Method |
8 | Machine Learning Basics What is Machine Learning Categories of Machine Learning Methods Optimization Basics |
9 | Deep Learning Artificial Neural Network and Back Propagation Computational Graph and Tensor Differential Data Simulation and Feedforward Implementation with NumPy Backward Propagation Implementation with NumPy Modern Deep Learning and Structures Tensorflow Basics and Visualization |
10 | Deep Learning Artificial Neural Network and Back Propagation Computational Graph and Tensor Differential Data Simulation and Feedforward Implementation with NumPy Backward Propagation Implementation with NumPy Modern Deep Learning and Structures Tensorflow Basics and Visualization |
11 | Deep Neural Network for Computer Vision Object Detection Semantic Segmentation HW3 : YOLO |
12 | Path planning algorithms Optimization-based control |
13 | Markov Decision Process Value Iteration Policy Iteration |
14 | Reinforcement Learning Q-Learning / Sarsa / DQN Policy Gradient / Actor-Critic HW4 : A2C (Car Example) |
15 | Reinforcement Learning Q-Learning / Sarsa / DQN Policy Gradient / Actor-Critic HW4 : A2C (Car Example) |
16 | Project Development Talk by Dr. Trista Chen |
17 | Project Development Talk by Dr. Trista Chen |
18 | Final Project |
有關課程其他調查 Other Surveys of Courses
1.本課程是否規劃業界教師參與教學或演講? 否Is there any industry specialist invited in this course? How many times? No
2.本課程是否規劃含校外實習(並非參訪)?
Are there any internships involved in the course? How many hours?
3.本課程是否可歸認為學術倫理課程? 否
Is this course recognized as an academic ethics course? In the course how many hours are regarding academic ethics topics? No
4.本課程是否屬進入社區實踐課程? 否
Is this course recognized as a Community engagement and Service learning course? Which community will be engaged? No