基本素養 Basic Literacy
核心能力 Competence
課程概述 Course Description
這門課除了讓學生能深入了解電腦視覺、機器學習及人工智慧-深度學習的理論知識,與分析深度學習的原理是如何結合人工智慧及電腦視覺發展而來的相互關係外,技術功能面會以授課老師多年的產學合作經驗來舉實際的範例解釋。課程會先教如何從2D影像重建3D物體及增擬實境的基本電腦視覺技術開始,接著就會傳授電腦視覺基本但實用的技術,包括即時偵測、追蹤及辨識系統的設計。再來藉由機器學習的連接帶入深度學習領域,教授如何藉由深度學習的原理來開發更好的即時偵測、追蹤及辨識技術來解決實際的問題。本課程期待培養學生於電腦視覺、機器學習及深度學習領域技術設計及整合實作的能力,透過作業實作來建立學生獨立研究、設計及創新的能力,並可把所學的理論基礎應用到工業界的實務面。空白
課程學習目標 Course Objectives
課程進度 Progress Description
進度說明 Progress Description | |
---|---|
1 | Introduction |
2 | Introduction to parallel computing (1/2) |
3 | Introduction to parallel computing (2/2) |
4 | Introduction to Artificial Neural Networks with Real-world Examples |
5 | Exploring Machine Learning Framework (Chainer) (HW #1) |
6 | Introduction to Distributed Deep Neural Networks |
7 | Parallel computing architecture & Programming models |
8 | Research survey (HW #2) |
9 | Parallel computing architecture (Multicore) |
10 | Project Proposal |
11 | Parallel computing architecture (GPU) |
12 | Basis of performance profiling (HW #3) |
13 | Introduction to OpenCL (APIs and Implementations) & Pthreads |
14 | Introduction to OpenMP & MPI |
15 | Workload partitioning and scheduling |
16 | Interconnection networks |
17 | The future of high performance computing |
18 | Term Project Presentation |
有關課程其他調查 Other Surveys of Courses
1.本課程是否規劃業界教師參與教學或演講? 否Is there any industry specialist invited in this course? How many times? No
2.本課程是否規劃含校外實習(並非參訪)? 否
Are there any internships involved in the course? How many hours? No
3.本課程是否可歸認為學術倫理課程? 否
Is this course recognized as an academic ethics course? In the course how many hours are regarding academic ethics topics? No
4.本課程是否屬進入社區實踐課程?
Is this course recognized as a Community engagement and Service learning course? Which community will be engaged?