基本素養 Basic Literacy

領導能力
學生應具備領導其他專長同仁解讀數據的才能
Leadership
Undergraduate students should develop leadership skills required of a person in a leading position
倫理及社會責任
學生需有自我學習的的意願及能力,並積極參與活動以擴大其社交網絡
Ethic & Social Responsibility
Undergraduate students should demonstrate ethical awareness in learning and in social networking
全球化視野
同學需適時的掌握現在國際間情勢的更替,並理解全球化的趨勢
Global Awareness
Undergraduate students should possess a global perspective and an awareness of the effects of globalization

核心能力 Competence

口頭溝通及表達能力
學生應具備基本的口語表達能力,能迅速的將事情完整地表達出來
Oral Communication/ Speaking
Undergraduate students should be able to communicate effectively in speaking.
寫作表達能力
學生應具備基本的寫作表達能力,能迅速的將事情完整地表達出來
Written Communication/Writing
Undergraduate students should be able to communicate effectively in writing.
創造及創新能力
同學需要有能力依據不同型態地問題及資料將所學做有效的及創新的整合以利問題的解決
Creativity and Innovation
Undergraduate students should be able to solve strategic problems with creative and innovative approaches
解決問題能力
同學需要有能力依據不同型態地問題及資料將所學做有效的及創新的整合以利問題的解決
Problem Solving
Undergraduate students should be able to solve strategic problems with creative and innovative approaches
分析及計算能力
同學需要有能力依據不同型態地問題及資料將所學做有效的及創新的整合以利問題的解決
Analytical & Computational Skills
Undergraduate students should be able to solve strategic problems with creative and innovative approaches
價值、技巧及專業度
學生能在其工作崗位上,貢獻其所學在統計分析上之專業知識,以冀望能取得在職場上對其統計專業的認同
Values, Skills & Professionalism
Undergraduate students should acquire the skills and values required of a true professional
專業能力
學生能在其工作崗位上,貢獻其所學在統計分析上之專業知識,以冀望能取得在職場上對其統計專業的認同
Technical Skills
Undergraduate students should acquire the skills and values required of a true professional
管理技巧
學生能在其工作崗位上,貢獻其所學在統計分析上之專業知識,以冀望能取得在職場上對其統計專業的認同
Management Skills
Undergraduate students should acquire the skills and values required of a true professional

課程概述 Course Description

矩陣向量之導論:Gauss-Jordan解線性方程組方法、矩陣之特徵值、特徵向量及其在微分方程與馬可夫鏈之應用;向量空間理論、基底變化之效果及應用;矩陣之對角線化問題理論及其在二次函數之應用;線性規劃問題。

課程學習目標 Course Objectives

To learn the fundamental theory of linear algebra including matrix algebra and applications in statistics./學習矩陣運算及線性代數基本理論及其在統計之應用

課程進度 Progress Description

進度說明 Progress Description
1Introduction
2Vectors & Linear Combination
3Matrices
4Linear Equations & Elimination
5Elimination & Matrix Operations
6Inverse Matrices
7First Midterm
8LU-Factorization
9Transposes & Permutations
10Vector Spaces
11Nullspaces
12Second Midterm
13Rank
14Complete Solution
15Linear Dependence & Basis
16Orthogonality
17Projection
18Final Examine
 以上每週進度教師可依上課情況做適度調整。The schedule may be subject to change.

課程學習融入下列議題或具有下列內涵的程度
Immersing the Following Issues or Contents

議題或內容 Issues or Contents關聯性 Correlation
性別平等 Gender Equity 無相關 No correlation
法治教育 Law-Related Education 無相關 No correlation
人權教育 Human Rights Education 無相關 No correlation
服務學習 Service Learning 無相關 No correlation
生命教育 Life Education 無相關 No correlation
智慧財產權 Intellectual Property 無相關 No correlation
環境安全 Environmental Safety 無相關 No correlation
環境保護 Environmental Protection 無相關 No correlation
文創產業 Cultural and creative Industry 無相關 No correlation
健康醫療照護產業 Health,Medical Treatment, Nursing Industry 無相關 No correlation
精緻農業產業 Advanced Agriculture 無相關 No correlation
生物科技產業 Biotechnology Industry 無相關 No correlation
觀光旅遊產業 Tourism 無相關 No correlation
綠色能源產業 Green Energy Industry 無相關 No correlation
強化工業基礎技術方案 Advancing basic industry technology program 無相關 No correlation
學術研究取向 Academic Orientation 無相關 No correlation
工作實務取向 Pragmatic Orientation 無相關 No correlation

有關課程其他調查 Other Surveys of Courses

1.本課程是否規劃業界教師參與教學或演講? 否
Is there any industry specialist invited in this course? How many times? No
2.本課程是否規劃含校外實習(並非參訪)? 否
Are there any internships involved in the course? How many hours? No